
DFG form 53.35– 07/16 page 1 of 20

Deutsche Forschungsgemeinschaft

Kennedyallee 40 · 53175 Bonn · postal address: 53170 Bonn phone: + 49 228 885-1 ·

fax: + 49 228 885-2777 · postmaster@dfg.de · www.dfg.de
DFG

Project Description – Project Proposals in the Area of Scientific Library Services and
Information Systems

LIS Call “Research Software Sustainability”

Anke Lüdeling, Berlin; Volker Gast, Jena

Project Description

A minimal infrastructure for the sustainable provision of extensible multi-layer
annotation software for linguistic corpora

Introduction

The project's goal is the design, implementation, evaluation and documentation of a
minimal infrastructure for the sustainable provision of research software. By hypothesis, an
infrastructure can only be operated sustainably in an academic context if the technical and
human resources that have to be provided by the respective academic institution can be
minimalized for the long-term from the onset.

In a case study providing a multi-layer annotation software for linguistic corpora, the
project exemplifies that for such an infrastructure only four components are strictly
necessary: a source code repository platform; a repository providing versions of the software
for end users; a repository providing the software's dependencies (e.g., software libraries); a
maintainer who administers and publishes the infrastructure and research software, and
manages the user and developer communities. Of these components, only the maintainer
arguably needs to be funded by the respective academic institution. For all other components,
potentially sustainable external infrastructure is available free of charge.

A further requirement for the sustainable operation of the infrastructure developed in the
project is the technical sustainability of the research software it provides. In the course of
the project, the prototype GraphAnno will be developed into a stable product. The product,
Hexatomic, has a strong use potential across different linguistic disciplines by satisfying a
verifiable high demand on the part of these scientific communities. Additionally, Hexatomic will
satisfy the requirement for technical sustainability early on in the project, by implementing best
practices of software engineering. These include, e.g., reproducible builds through an
automated build system; comprehensive documentation of all aspects of the software; a
permissive open source license; portability and runability on different operating systems;
comprehensive test suites; public provision of the source code; extensibility and adaptability
through modularization and a generic data model; extensive compatibility with other tools and
data standards; well-structured community processes. The project evaluates and documents
not only the satisfaction of the software's use potential, but also its potential for long-term,
project-independent development. This is partly achieved through the acquisition of external
contributions of functional modules to Hexatomic.

Moreover, the minimal infrastructure model is not only implemented, its implementation
is also documented and tested. The test results are, in turn, documented and condensed into
best practices, which represent an important project goal in and of themselves. In combining a
hypothesis-driven approach with a case study, the project makes an important contribution
towards the evaluation of minimal requirements for sustainable infrastructures for research
software.

1 Starting point and preliminary work

Research software1 has only recently started to play a more substantial role in the context of the
larger discussion about the sustainability of research outcomes, which had hitherto mostly dealt
with research data. Consequentially, the sustainability of research software has since become

1 We follow the call for proposals in its definition of research software as "refer[ring] to the software applications and

software libraries specially created for scientific knowledge gain".

DFG form 53.35– 07/16 page 2 of 20

the focus of a number of workshops (e.g., RE4SuSy, #hgfos16) – even a dedicated international
workshop series, WSSSPE (http://wssspe.researchcomputing.org.uk/) – and conferences (e.g.,
RE Conferences 2013/2014). Additionally, funding agencies have started issuing calls for
projects dealing with the subject, such as the one we are answering with our proposal, and have
entered into an international collaboration for exchanging knowledge and experiences in the
field (Hettrick 2016).

As the discourse on research software sustainability itself is relatively young, not all
fundamental research has been conducted yet. The role of infrastructures for the sustainability
of research software is one of the open research questions that need to be addressed. More
precisely, how can infrastructures be designed and created to cater for the sustainable provision
and reusability of research software?

The project we propose here aims at helping to answer this question in that it

 contributes a point of view that is based on the hypothesis that sustainability of research
software can best be achieved by minimizing rather than creating infrastructure,

 defines and implements a design for a minimized infrastructure for the sustainable provision
of research software that also enables re-usability,

 tests and documents this strategy and the implemented solutions, thus contributing towards
best practices for sustaining research software in a financially-constrained environment with
limited human resources.

As the phrase "infrastructure for the sustainable provision of research software" is ambiguous2,
we will attempt definitions of some of the key terms, namely "infrastructure", "provision", and
"sustainability" in this section.

1.1 Infrastructures and provision of research software

"Infrastructures", in the context of this proposal, can be defined more precisely as technical and
organisational infrastructures for the provision of research software. Infrastructures generate
running operating costs. "Operating costs" include

 costs for acquisition and operation of necessary hardware, such as servers or GPU grids;

 costs for acquisition and operation of necessary software;

 costs for organisation, maintenance and extension of the above assets as well as necessary
integration and development of new software, i.e., essentially personnel costs.

Furthermore, infrastructures can be classified as internal and external infrastructures. "Internal
infrastructures" are infrastructures that are provided by institutions from the academic domain
itself, i.e., universities, research institutes, research data centres, etc. "External infrastructures"
are infrastructures that are provided by bodies outside of the academic domain, i.e., companies,
foundations, extra-academic communities, etc. In order to sustainably provide research
software, infrastructures, both internal and external, must be sustainable themselves. Based on
the definition above, sustainability of internal infrastructures can only be achieved by minimizing
their operating costs. Additionally, a single unsustainable component within an internal
infrastructure leads to crucially diminished sustainability of the whole infrastructure.

We propose a model and implementation of a minimal infrastructure for the sustainable
provision of research software that aims to minimize the operating costs for internal
infrastructure, while at the same time employing sustainable components and enabling the re-
use of the research software it provides.

"Provision of research software" by infrastructures can be read as "serving research
software", i.e., providing access to the functionality of a running instance of research software to
end users through web technologies such as browser-based GUIs, RESTful APIs, etc. For the
context of this proposal, however, we define provision as providing access to source code, build

2 The phrase may well be read and understood along the lines of "servers and supporting technology that serve

research software", i.e., a single instance of a research software service which runs on a server and provides the
functionality of the research software to end users. This is not how we define the phrase, and ultimately we do not
believe that such infrastructures can be run in a way that merits our definition of sustainability. Monolithic remote
services such as these lose, in fact, traction as a technology, cf. recent developments such as the advent of
microservices, serverless architectures, etc., which are all supported by distributed rather than centralized services
and technology.

http://wssspe.researchcomputing.org.uk/

DFG form 53.35– 07/16 page 3 of 20

artifacts, and documentation of a research software to enable long-term reproducibility, and thus
re-usability and adaptability of it, independent of specific instances and personnel. The task of
serving the software to end users (researchers) is transferred to either the end users
themselves (for locally run software) or administrators, service providers, data centres, etc. (for
remotely run software), which – in our definition – taken together form the user base of the
research software.

1.2 A minimal infrastructure for the sustainable provision of research software

We argue that a minimal infrastructure model for the sustainable provision of research software
consists of only four components:

1. A source code repository platform
2. A repository for build artifacts ("releases")
3. Repositories for dependency artifacts
4. A maintainer

1.2.1 Source code repository platform

We define "source code repository platform" (SCRP) as a remote platform which hosts source
code and provides additional services, minimally an issue tracker and hosting of a public entry
point and documentation. Examples for SCRPs include GitLab (https://about.gitlab.com/) and
GitHub (https://github.com/). The SCRP represents the Single Point of Contact for users and
contributors of the software. It provides means to version and access the source code, and the
user and developer documentation, and links to the release repository (see below). It does not,
however, provide instances of the research software itself; the operation and administration of
the software is instead delegated to the user. In this infrastructure model, the term "user"
includes both end users (e.g., domain researchers who use the software to process data) and
administrators (i.e., providers of running instances of a software, which is accessed and used by
end users). This increases the sustainability of a research software, inasmuch as Single Points
of Failure are eliminated from the model: If a single instance of the software fails, it can be re-
duplicated from a release, and the data – which has ideally been sustained independently of the
software – can be re-imported.

The SCRP also provides a means of communication between the maintainer and the
developer and user communities by way of an issue tracker. The issue tracker is used by the
maintainer to track and document the implementation of new features, enhancement requests
and bug fixes as well as merges of contributions into the code base, and to organize
contributions and bug fixes in release roadmaps. Users use it to contribute and track bug
reports and enhancement requests. Developers use it to contribute to the code base through
pull requests. User and developer documentation for a research software is also hosted on the
SCRP, e.g., in the form of browsable documentation (web pages, wiki, or similar), or
downloadable resources (PDF, CHM, or similar). Finally, the SCRP provides a public entry point
to the research software project in form of a web page or similar document.

1.2.2 Release repository

A release repository hosts different versions of build artifacts of a software. Release repository
types range from a directory on a server to dedicated binary repository managers and
repositories dedicated to research outcomes, including research software. Ideally, they provide
a unique identifier for each version that is released.

1.2.3 Dependency artifact repository

We define “dependency artifact repositories” as build artifact repositories which enable
automated collection of dependency artifacts (e.g., libraries or modules re-used in a software)
during the software build process. Dependency artifact repositories also store metadata which
describes an artifact. There are standard dependency artifact repositories for many of the major
programming languages, such as Maven (http://maven.apache.org/) for Java, the Eclipse P2
repositories for Eclipse Plugins (https://wiki.eclipse.org/Eclipse_Project_Update_Sites), PyPI
(https://pypi.python.org/pypi) for Python, Hackage (https://hackage.haskell.org/) for Haskell,
CPAN (http://www.cpan.org/) for Perl, etc.

https://about.gitlab.com/
https://github.com/
http://maven.apache.org/
https://wiki.eclipse.org/Eclipse_Project_Update_Sites
https://pypi.python.org/pypi
https://hackage.haskell.org/
http://www.cpan.org/

DFG form 53.35– 07/16 page 4 of 20

1.2.4 Maintainer

The maintainer is responsible for integration, and release strategies and roadmaps. She tests
the code base and pull requests, integrates contributions, builds snapshot and stable releases
and deploys them to the release repository. She also communicates with the user and
developer communities, and is responsible for the maintenance of the infrastructure's
repositories and projects' public entry points.

1.2.5 Internal and external components

In order to ensure minimized operating costs for the infrastructure, it is necessary to use as
many external infrastructural components as possible. As both SCRPs and artifact repositories
exist outside of the academic domain as indispensable all-purpose software development tools,
the only component that should arguably be internal is the maintainer. As our infrastructure
model is designed to be implemented in discrete configurations for each single entity of
research software, depending on the requirements of the software implementation itself, the role
of maintainer can usually be filled with relatively little overhead. If possible, the role could be
assigned to research data officers or data centre employees, ideally with permanent positions.

1.2.6 Requirements

In order for an implementation of our infrastructure model to work reliably, it must be able to
endure component changes at any given time. While it may be relatively simple to switch
SCRPs and artifact repositories and move the respective objects, the infrastructure must also
be made failsafe against changes in the maintainer role, which can safely be predicted to be the
most common change in infrastructure components. For this reason, the technical sustainability
of the respective research software itself is an important requirement for sustainable provision:
New maintainers – but also users and developers – must be able to reconstruct the research
software's architecture, its requirements, dependencies, build processes, etc., and must also be
enabled to change, test, build and deploy it, independently of earlier maintainers and indeed the
originators of the research software.

1.2.6.1 Technical sustainability of research software

Software sustainability in itself is still an underspecified concept. There is sparse literature on
the subject itself (e.g., Tate (2005); Penzenstadler (2013); Penzenstadler and Femmer (2013);
Goble (2014); Gröger and Köhn (2015); Druskat (2016a); Druskat (2016b)). Becker et al. (2015)
is a helpful resource, as the authors provide a set of preliminary definitions of software
sustainability, if not explicitly for research software, for which – as we argue further below –
specific constraints exist. They define five "dimensions" of software sustainability (Becker et al.
2015, 471), of which technical sustainability3 corresponds directly with the research software
sustainability requirement. Druskat (2016a) refines the concept of technical sustainability of
software via goals, which he defines as (1) ensuring the existence of the software, (2)
preserving the potential for productive operation of the software, (3) creating and retaining
possibilities for further development and adaptation of the software.
In comparison to non-research software, research software is ultimately in greater need of
sustainability due to the high fluctuation of staff working on it, which in turn is due to the
particular funding structures and funding strategies in academics; A great number of research
software projects cease simply because the people who work on them move on to new projects.
Additionally, the fact that research software is often funded with public money makes
sustainability essentially a civic duty.

Jackson et al. (2011) cater towards Druskat's (2016a) definition by determining some of the
criteria groups contributing to the technical sustainability of research software, of which some (in
bold print) plausibly enable (new) maintainers in our infrastructure model to fulfill their role as
outlined above: Discoverability, Automated build system, Understandability, Documentation,
Buildability, Installability, Learnability, Identity, Copyright, Licensing, Governance,
Community, Accessibility, Testability, Portability, Supportability, Analysability,
Changeability, Evolvability, Interoperability.

3 Becker et al. (2015, 417f.) define technical sustainability as "refer[ring] to longevity of information, systems, and

infrastructure and their adequate evolution with changing surrounding conditions. It includes maintenance, innovation,
obsolescence, data integrity, etc."

DFG form 53.35– 07/16 page 5 of 20

Druskat (2016b) further suggests that the sustainability of research software depends on a
larger set of criteria than non-research software, e.g., funding status and availability of human
resources for maintenance and development. This is in line with our understanding of
sustainability of infrastructures as outlined above (Internal and external components).

If a research software fulfills the criteria listed above, it can be assumed that it will be
maintainable as easily as possible, and thus any person that fills the maintainer role in our
infrastructure will be enabled to fulfill the role optimally. Proving this assumption true will be one
of the main goals of our project (see also section Objectives and work programme).

In conclusion, we define "infrastructure for the sustainable provision of research software",
as a minimal technical and organizational infrastructure which enables the use, re-use, and
reproduction of a research software independently of its original creators, and earlier product
owners or maintainers. Such a minimal infrastructure consists of a source code repository
platform, a build artifact repository, a dependency artifact repository, and a maintainer. Of these
components, only the maintainer should arguably be situated within the academic domain to
minimize running operating costs. In this type of infrastructure, components can be substituted
relatively easily. However, in order to enable abrupt changes – even temporal gaps – in the
maintainer role without risking the loss of access to the software, the research software itself
must be technically sustainable.

1.3 Implementation of the infrastructure model

1.3.1 Multi-layer annotation software for linguistic corpora

In the course of the proposed project, we will implement our minimal infrastructure model in a
pilot study: An infrastructure for the sustainable provision of a re-usable platform for the manual
and semi-automatic processing and annotation of linguistic multi-layer corpus data. As the
infrastructure model is most effectively employed for discrete applications, this kind of software
presents a reasonable research object for which a case study can be completed within the fixed
term of a project, including documentation and evaluation of solutions.

While there is a wide variety of corpus annotation tools available, the demand across
different linguistic fields for an interdisciplinarily usable, maximally compatible platform for true
multi-layer annotation of linguistic corpora is still high and unfulfilled. In the context of this
proposal, providing an overview of all available annotation tools is impossible, especially since
some corpus annotation projects will invariably build specialized tools without ever publishing
them, thus foiling sustainability efforts by producing "hidden software"4. Additionally, knowledge
about which tools exist is distributed over different research communities, and hence partially
irrecoverable for people outside these communities.

Biemann et al. (forthcoming) provide an attempt to catalogue and categorize a larger set of
available annotation software. The largest category of tools is "Specialized Single-User Tools",
i.e., software that focuses on one type of annotation. We will neglect this category altogether, as
these tools decidedly fall outside of the scope of multi-layer annotation software. Biemann et al.
(forthcoming) also make the distinction between web-based and standalone tools, as well as
between those that support workflows with multiple users and roles. The authors argue that
web-based tools running on centralized infrastructure provide – among other features – shared
and efficient data storage, multi-role support, support for automatic pre-annotation services
(essentially NLP) and easily accessible user interfaces without the need for local installation of
software. The examples for such software they give are WebAnno (Yimam et al. 2013) and
GATE Teamware (Bontcheva et al. 2013). Both use a central server for data storage, while
WebAnno also uses a server-based web application to perform the actual annotation tasks.

However, in analogy to our decision to minimize centralized (internal) infrastructure for the
provision of research software, we argue that web-based annotation software served from
centralized infrastructure is essentially unsustainable, as it creates running operating costs and
constitutes a Single Point of Failure which implicitly also increases the risk of data loss. For
some use cases, annotation software running on a web server is intrinsically impractical, e.g.,
for linguistic fieldwork where the annotator cannot connect to the internet, or for offline work

4 Gil et al. (2016) implicitly define "hidden software" (called "dark software" ibid.) as unpublished software. According

to Gil et al. (2016, 331), "[m]any scientists do not share their software, because they are unaware of its value, or they
do not know how, or they are worried about not getting proper acknowledgment, or they do not see its value."

DFG form 53.35– 07/16 page 6 of 20

during travels. Additionally, the advantages of web-based annotation software named by
Biemann et al. (forthcoming) can just as well be realized by locally running standalone software:

 Shared data-storage in locally running, offline software can easily be realized through the
use of version control systems such as git (https://git-scm.com/). git is especially suitable for
versioning and sharing text-based annotations, as it provides a system for merging changes,
and works on a local repository which can be linked with one or more remote repositories. This
way, the user can efficiently version data independently from available network connections.

 git also enables multi-role setups through its repository and branching models. The different
roles defined by Biemann et al. (forthcoming) – annotators, project managers, curators,
administrators – can utilize git for their specific needs: annotators work on specific branches
reserved for on-going annotation work; project managers can employ different repositories for
different annotation projects while monitoring progress and annotator performance, and
discovering issues via git's logging and blaming functions; curators can pull changes from
annotation branches into dedicated curation branches at any time; administrators – relieved of
the duty to run a whole infrastructure – can set up repositories, configure access, etc.

 There is no reason why standalone tools should not be able to interface with pre-annotation
services, either by embedding the respective libraries, or by calling remote APIs which would
need to be available for utilization in both application types, local and remote, anyway.

 Easily accessible user interfaces, that is, ones that are easy to learn and use, depend more
on accessible user interface design metaphors than on the implementation details of a software.
In fact, it seems more sustainable to make the software in question extensible with a variety of
different interfaces. This can be achieved, for example, by utilizing a module-based application
framework, as outlined below.

 Portable desktop software can simply avoid complicated installation procedures by providing
a single archive, which – after extraction – provides a ready-to-use application.

All in all, web-based annotation tools, in contrast to extensible standalone tools, can be said to
implement different concepts, and fulfill a different set of targets: While remote tools are
concerned with standardized and accessible workflows, extensible standalone platforms offer a
greater potential for sustainability and application in diverse use cases. In consideration of the
aspects discussed so far, we will implement an extensible multi-layer annotation platform as a
standalone application rather than a remote infrastructure (cf. section Objectives: Research
software).

To the best of our knowledge, none of the existing tools – whether web-based or standalone
– can handle true multi-layer annotation. By "capabilities for true multi-layer annotation" we
mean features that provide for, e.g., unrestricted multiple segmentation5, enriching existing
corpora with custom annotation types, and merging different annotation layers into one and the
same corpus. The implementation of such capabilities requires a powerful data model which is
able to represent potentially unlimited types of annotations, as well as merge different kinds of
annotation structures into the same corpus model to facilitate combined analysis. While true
multi-layer annotation search tools like ANNIS (preliminary work by Lüdeling, cf. Zeldes et al.
(2009)) or KorAP (Bański et al. 2014) and data formats (e.g. PAULA XML (Chiarcos et al. 2008)
or TCF (Heid et al. 2010)) exist, we see a rising demand in annotation tools and workflows that
support such true multi-layer annotation. Some of the existing annotation tools like GraphAnno
(preliminary work by Gast, cf. Gast et al. (2015a, 2015b)) or WebAnno already use a flexible
annotation data model which would at last theoretically be able to handle this kind of multi-layer
data. However, in order to facilitate true multi-layer annotation as defined above, annotation
software must also provide features that allow the user to harness the full potential of the data
model. These features must arguably be implemented in user interface components that permit,
e.g., multiple segmentation, the addition of arbitrary annotation layers, and annotation layer
merges. In turn, this requirement implies that the annotation software in question must be
extensible, as it is impossible to predict all use cases in a multi-layer annotation workflow. In
order to sustainably provide extension capabilities in the sense that technical barriers for

5 Multiple segmentation, such as multiple tokenizations of multiple data sources within one corpus, are needed for

the analysis of historical corpora, e.g., RIDGES Herbology (Odebrecht et al. 2016), as they often contain data
sources for original script, transcription, normalization, etc., all of which must be tokenized for particular annotations.

https://git-scm.com/

DFG form 53.35– 07/16 page 7 of 20

potential contributors are kept as low as possible, the software in question should ideally use a
modularization framework that allows to add and remove modules to the product without
changing the core architecture and functionality at all. Neither of the above-mentioned potential
software candidates for true multi-layer annotation are modularized in that sense.

Considering this, it seems that in order to create a technically sustainable true multi-layer
annotation software, it must be built on top of a modularized application framework. Additionally,
as annotations can be persisted in a wide variety of data formats, multi-layer annotation
software must be able to merge annotations from these formats in order to facilitate the
enrichment of a given corpus with additional annotations. Therefore, it should be compatible
with as many formats as possible, or at least provide a way to extend it so it can be made
compatible with a given format. Furthermore, as many annotations now come from automatic,
or semi-automatic, annotation processes, the software should provide an interface to existing
natural language processing (NLP) tools or infrastructures.

In conclusion, it is necessary for the implementation of our infrastructure model to employ an
annotation tool with at least the following requirements.

• Generic data model, capable of representing true multi-layer data
• Extensible architecture, ideally on top of an existing modularized application framework
• Interfaces to existing NLP tools
• Compatibility with a large number of linguistic formats

As none of the existing tools fulfill all these requirements and we do not intend to implement
such an annotation tool from scratch in the course of the project we propose, we will re-use
existing software and combine them into the envisaged technically sustainable platform. As, in
contrast to other tools mentioned above, GraphAnno's data model and feature set (cf. Gast et
al. 2015a) is the most generic and universally applicable in the context of multi-layer annotation,
we will use it as a starting point. Additionally, an architectural prototype for an extensible
annotation platform already exists in the form of Atomic (preliminary work by Gast, cf. Druskat et
al. 2014). In fact, the former has originally been designed to serve as a functional prototype for
the latter, so that we anticipate a relatively straightforward transfer of GraphAnno's functionality
to the architectural setup of Atomic, merging both into the target software we call Hexatomic
(Highly extensible annotation tool for multi-layer corpora).

1.3.1.1 Research software for a case study: GraphAnno

GraphAnno (https://github.com/LBierkandt/graph-anno) is a productivity prototype for a browser-
based annotation software for multi-layer corpora, written in Ruby, whose graph-based model is
suitable for the representation of annotations from diverse research approaches. It has originally
been developed in the context of a typological project, but has since grown into a user-friendly,
lightweight software for universal corpus annotations, and is actively used by a growing
community of linguists. In combination with GraphPynt
(https://github.com/VolkerGast/GraphPynt), a Python interface for GraphAnno, the latter can
interface with the Natural Language Toolkit (NLTK) as well as a number of existing import
modules for different linguistic formats. GraphAnno can also export to CSV.

In GraphAnno, the user works with an embedded command line interface, backed by a
native command language, a small number of control widgets, and a direct visualization of the
graph model. Additionally, GraphAnno includes a number of assistance views and supports
embedding of multimedia files. For the exploration of corpus data and direct annotation of query
results, a native query language is provided.

GraphAnno can potentially be applied to a large number of research questions from a variety
of linguistic disciplines, especially due to its generic data model and interface to other (Python-
based) tools. In contrast to this potential, GraphAnno has not been developed towards
sustainability, which is reflected in its monolithic architecture and consequentially its lack of
modularity. On the one hand, this impedes distributed future development independently of the
original developers. On the other hand it will be difficult to extend GraphAnno with features for
re-use outside of the original use case, for example with features for new annotation types and
corpus structures; with optimizations and extensions of the user interface (by, e.g., less abstract
editors for specific annotation tasks); with annotation task control independent of the command
line such as mouse-based graphical annotation. Extensibility, however, is not only a key

https://github.com/LBierkandt/graph-anno

DFG form 53.35– 07/16 page 8 of 20

requirement for potential re-use of research software in general, it also serves as a fall-back
mechanism for our minimal infrastructure: While the latter is explicitly designed for fail-safety
(see above), extensibility and modularization enable the research software in question to
sustain even without a maintainer. New features and other changes do not have to be
integrated into a monolithic product, but can instead be added "offline" (e.g., in a local copy of
the source code pulled from the SCRP) as modules. As soon as a new maintainer for a project
is found, these changes can again be integrated into releases of the software.

Both GraphAnno and GraphPynt have been developed by single developers. In the case of
GraphAnno, the developer has already left academia. Additionally, no dedicated permanent
positions are available for the development of either GraphAnno or GraphPynt.

However, as the demand for an annotation software with the comprehensive feature set and
capabilities of GraphAnno in combination with GraphPynt is unfulfilled as of yet, and our
infrastructure model is based on the assumption that the research software to be provided is
technically sustainable, we will make GraphAnno sustainable in the course of our project.

We will achieve this through the modularization of GraphAnno's architecture, and the
inclusion of GraphAnno and GraphPynt in an existing software, developer, user and maintainer
infrastructure: corpus-tools.org (Druskat et al. 2016). Specifically, we will follow Artaza et al.'s
(2016) good practice of "not re-inventing the wheel" (as well as others of course), by using a
well-established plugin-based application framework for the modularization of GraphAnno, the
Eclipse Platform (https://wiki.eclipse.org/Rich_Client_Platform, see also section Objectives:
Research software). In accordance with our infrastructure model, the sustained GraphAnno will
serve as a pilot object to be provided to the linguistic community by an exemplary infrastructure,
to be implemented in the course of our project.

1.3.1.1.1 GraphAnno - status, usage, suitability, potential

GraphAnno, despite being a prototype, has already been, and is being used for conducting
linguistic research, e.g., Gast et al. (2015a), Gast et al. (2015b), Gast (forthcoming a) and Gast
(forthcoming b). As already detailed above, GraphAnno already has almost all of the features
that a technically sustainable software for multi-layer corpus annotation should have: It has a
generic graph-based data model which allows the representation of diverse annotations and
thus re-use in use cases beyond the original one. It interfaces with the NLTK and other Python-
based NLP tools via GraphPynt. It is compatible with common corpus annotation formats such
as Computational Natural Language Learning (CoNNL), and more specific schemes such as
TimeML. In order to leverage GraphAnno's potential as a universally applicable multi-layer
annotation platform, it simply needs to be modularized so that additional user interfaces can be
added to work on its data model.

Hexatomic, the new, modularized version of GraphAnno which also integrates with corpus-
tools.org, has great potential to be used far beyond the proposed project. As it interfaces
directly with ANNIS – cf. section Objectives: Research software –, it will fill the "annotation gap"
for the large group of projects which already use ANNIS for search in and analysis of their
corpora. It also has the potential to unlock completely new use cases for whole linguistic
communities and their data, e.g., in language documentation or historical linguistics. Some of
the potential use cases that are not covered by the attached letters of intent include

 The initial creation and further annotation of multi-layer corpora: Through compatibility with
different linguistic formats, Hexatomic can be used to merge different annotation types from
different sources into one corpus and work directly on that corpus, enabled by the generic
graph-based data model.

 Collaborative annotation: By using a decentralized version control system such as git for
locally persisted files, Hexatomic can be used for collaborative annotation. Additionally, through
the use of corpus-tools.org's conversion framework (which will be embedded in Hexatomic, cf.
below section Objectives: Research software), corpus data can be converted into the format
that is most suitable for the respective collaboration use case.

 Re-use of existing corpus data: Through the use of corpus-tools.org's conversion
framework, existing corpus data can easily be enriched with new annotations, which is, for
example, a common use case in final theses.

http://corpus-tools.org/
https://wiki.eclipse.org/Rich_Client_Platform

DFG form 53.35– 07/16 page 9 of 20

1.3.2 Infrastructure components

In consideration of industry standards for the development of open source and research
software, the following components are obvious candidates for an implementation of our
infrastructure model.

• Source code repository platform: GitHub
• Repository for build artifacts: Zenodo
• Repositories for dependency artifacts: Maven Central and Eclipse P2 repositories
• Maintainer: Changing (see section Objectives and work programme)

GitHub (https://github.com) is a source code repository and platform. It works with different
version control systems (git, SVN (https://subversion.apache.org/)), and provides a wide range
of services which make it suitable for use as the SCRP component in our infrastructure. An
SCRP must provide at least the following features: an issue tracker; a means to host a public
entry point; a means to host documentation. GitHub offers an on-site issue tracker with pull
request functionality. Public entry points can be implemented on GitHub as enriched repository
landing pages. This way, the page can be used as an entry point, displaying all relevant
information on the research software. GitHub also offers different options for hosting
documentation, such as a wiki for each repository, and GitHub pages, where websites can be
hosted directly from the source code repository and can thus be used to display software
documentation content and links. We will use GitHub as our SCRP, thereby providing source
code, documentation and a single entry point.

Zenodo (https://zenodo.org/) is a general-purpose open access research data repository
which hosts user files up to a size of 50GB. It provides a dedicated data type "software" and a
unique identifier (DOI) for each hosted artifact. Zenodo also integrates closely with GitHub:
Release-ready code can be tagged as a "release" on GitHub, and if the GitHub repository is
linked with Zenodo, the release is automatically archived there. This not only secures long-term
availability of releases, it also makes releases citable, contributing to the sustainability of the
research software in its own right through documenting and increasing its impact and thus
enlarging the community of potential stakeholders (cf. Smith et al. 2016). We will use Zenodo as
our release repository, thereby providing citable build artifacts.

The Maven Central Repository (http://repo1.maven.org/maven2/), is a repository hosting
software artifacts (e.g., libraries), which are accompanied by metadata. Apache Maven
(https://maven.apache.org/) is a build automation tool primarily used for projects implemented in
the Java programming language. During a Maven build, dependencies of the software being
built (e.g., libraries used by the software) can automatically be pulled from repositories and
included in the build artifact. The Maven Central Repository is the default source for
automatically collected dependencies. It also provides a minimal quality insurance mechanism
in that only artifacts with quality Maven metadata can be deployed to the repository.

The Eclipse P2 repositories are the default provider for plugins and plugin bundles (called
"features") used in applications based on the Eclipse Platform. The Eclipse P2 ("Provisioning
Platform") project focuses on provisioning technology for OSGi-based applications, and while it
has specific support for installing Eclipse-based technology, it includes a general-purpose
provisioning infrastructure that can be used as the basis for provisioning solutions for a wide
variety of software applications.

Eclipse Tycho (https://eclipse.org/tycho/) provides a plugin for Maven build automation which
pulls dependency artifacts from P2 repositories and includes them in the build artifact. We will
use both Maven alone and Maven with Tycho as our build automation tools, and Maven Central
and the Eclipse P2 repositories as our dependency artifact repositories, thereby enabling
reproducible and automatable builds.

The maintainer is arguably the central component in our infrastructure as she commands not
only the integration, release and testing workflows, but is also responsible for communication
with users and contributors. Additionally, she manages and maintains the other infrastructure
components, and substitutes them if necessary. Within the proposed project, the maintainer is
also responsible for documenting infrastructural decisions, builds and releases, maintainer
changes, etc. We will start the project assigning the maintainer role to one of the project team's
researchers. In the course of the project, however, we will test the infrastructure's capability of

https://github.com/
https://subversion.apache.org/
https://zenodo.org/
http://repo1.maven.org/maven2/
https://maven.apache.org/
https://eclipse.org/tycho/

DFG form 53.35– 07/16 page 10 of 20

enduring changes by re-assigning the role, first to the other researcher in the team in a
simulation phase, then to a student assistant within the team as a proper test, subsequently to a
student assistant outside of the core team as a stress test of the infrastructure, and finally to the
person filling either the existing permanently funded Research Software Engineer position at the
Corpus Linguistics and Morphology research group, or a permanently funded Research Data
Management position currently in planning at the Philological Faculty II (both at Humboldt-
Universität zu Berlin). The last step will ensure the autonomy of the infrastructure from external
funding after the end of the project (cf. section Work packages, WP3).

1.3.2.1 Sustainability of infrastructure components

While to achieve sustainability for our infrastructure, single components must be replaceable at
any time, the risk of potential complete failure of single components should be minimized from
the onset. At the same time, in order to make the infrastructure as a whole sustainable, it is
necessary to reduce running operating costs for academic stakeholders to a minimum. This
makes it necessary to use external infrastructural components, as defined above. While it is
obviously impossible to control these external components and prevent them from failing
completely, it is possible and necessary to choose those components that have the greatest
potential to sustain in the long-term. The following paragraphs describe the potential for
sustainability of the components we have chosen for our pilot implementation.

GitHub is not only one of the most prominent source code repository providers, it is also the
largest host of source code in the world (> 85.5 mio. repositories6). However, size alone does
not make a component sustainable.7 The Software Heritage archive (Cosmo and Zacchiroli
2017) has made it its "long term goal [...] to collect all publicly available software in source code
form together with its development history, replicate it massively to ensure its preservation, and
share it with everyone who needs it" (ibid.). The project is thus building a distribute infrastructure
(in this case, a large set of peer server nodes for massive re-duplication of content) and are in
the process of growing a multi-stakeholder network of peers (“The Software Heritage Archive”
2017). One of the main features of the project is that the archive includes all public repositories
from GitHub, making GitHub a sustainable component for our own infrastructure, as our source
code will be recoverable even if its host disappears.

Zenodo's technical infrastructure is funded by the European Organization for Nuclear
Research (CERN), while its staff is funded both by CERN and through OpenAIRE grants. While
the OpenAIRE project runs out in 2017, CERN has a five year rolling plan (Grootveld and
Nowak 2017). Additionally, the Zenodo team is collaborating with funders to secure cloud-credit
schemes. Zenodo provides long-term bit-level preservation in the CERN Data Center. It is in the
process of applying for the Data Seal of Approval, and CERN is additionally working towards
ISO certification of its technical and organisational infrastructure. Zenodo has grown into a well-
regarded repository in its own right and is recommended as a target for research output in the
European Commission's data management guidelines for Horizon 2020 projects (European
Commission 2017).

Maven Central is a central infrastructure for the automated build of applications with different
build tools, and Apache Maven uses it as its default repository (“‘About Maven Central’” 2017). It
is free, highly available through geographically distributed dedicated servers in North America
and Europe, and a number of major open source organizations such as the Apache Software
Foundation, the Eclipse Foundation, JBoss as well as a multitude of individual open source
projects publish their artifacts there. As Maven Central is business-critical infrastructure for an
unfathomable number of software companies throughout the world – it hosts well over
1,100,000 software components, a lot of which are required dependencies of even more
software projects – it can arguably be expected to exist for as long as software is developed in
Java and built with Apache Maven. The Maven build tool itself is provided by the Apache
Software Foundation, a US 501(c)(3) charitable open source software foundation, which is
dedicated to sustaining the open source solutions it provides. As of the annual report for the

6 As queried via the GitHub API on 20 March 2017. Query: https://api.github.com/repositories?since=85000000.
7 Although, arguably, the sheer numbers of stakeholders for GitHub would seem to make a difference should it be

necessary, e.g., in case GitHub, Inc. went bankrupt. At present, GitHub must be regarded as the de facto industry
standard for open source code hosting and communities, and its disappearance would have a major impact on the
software industry as a whole.

https://api.github.com/repositories?since=85000000

DFG form 53.35– 07/16 page 11 of 20

fiscal year 2015-2016, the Apache Software Foundation has a cash reserve of "1.755 million
[USD], or 24.1 months at the FY 15 monthly spend of $72.9K" (Apache Software Foundation
2016). It is financed in part through sponsorship by large software companies such as Google,
Microsoft, Yahoo!, Facebook, IBM, and many others, as well as infrastructure sponsors partly
from the academic domain (e.g., Freie Universität zu Berlin). The Eclipse P2 repositories
providing Eclipse Platform components are "retained indefinitely"
(https://wiki.eclipse.org/Eclipse_Project_Update_Sites). They are funded by the Eclipse
Foundation, a US 501(c)6 not-for-profit foundation, whose more than 250 members include
large industry corporations such as IBM, Oracle, Bosch and SAP.

The maintainer is the one component in our infrastructure model which is kept replaceable
by design. The academic workforce is, on average, highly mobile due to a general prevalence of
fixed-term contracts. While the person filling the role will probably have to be substituted on a
fairly regular basis – usually whenever a funding period comes to its end – the role itself must
be supported by measures securing the sustainability of the infrastructure in general. These
measures mainly consist of comprehensive documentation of the different aspects of the role:
technical details as well as design and architectural decisions regarding the research software
to be provided and the infrastructure supporting the provision; community rules including codes
of conduct, etc.; workflows (build procedure, release procedure, contribution procedure,
maintainer change procedure, infrastructural substitution procedure, documentation procedure,
report procedure, etc.). This documentation must be provided via the infrastructure itself, and
must be kept up-to-date by the maintainer.

In conclusion, the infrastructure model we envisage enables the provision of research
software, and does so sustainably, as it maximally reduces the cost for research institutions by
harnessing external infrastructure wherever possible. These external infrastructure components
are sustainable in themselves. In order for our model to be successfully implemented and
employed, the research software it is meant to provide must also have a high degree of
technical sustainability, as defined above. The infrastructure model as a whole is independent of
our prototypical implementation, as the components can be picked with respect to the use case:
For a web application built on the MEAN stack (MongoDB, Express.js, Angular, Node.js), for
example, the SCRP could be GitHub, Gitlab, Bitbucket or any other alternative and the
dependency artifact repository would probably be NPM (https://www.npmjs.com/); The build
artifact repository could be Zenodo or any other suitable repository, and the maintainer
component must be implemented depending on the project setup anyway. Of course, our
infrastructure model is not suitable for any and all projects. Research software providing
crowdsourcing functionality, for example, cannot be provided in this way, as arbitrary users
cannot be expected to coordinate via a SCRP. Instead, a server-based solution is more suitable
in this case. Similarly, research software that processes Big Data will not be useful as a
download on a single computer. Instead, such software will most likely be provided backed by a
computational grid. Nevertheless, for cases such as ours where manual or semi-automatic
processing of relatively small batches of data is the core function of the software, we believe our
infrastructure model to be a perfect fit, and highly sustainable.

1.4 Project-related publications

1.4.1 Articles published by outlets with scientific quality assurance, book publications,
and works accepted for publication but not yet published.

Volker Gast

Gast, V. forthcoming a. „The scalar operator even and its German equivalents: Pragmatic and syntactic factors
determining the use of auch, selbst and sogar in the Europarl corpus“. In De Cesare, A. & C. Adorno (eds.), Focus on
Additivity. Multifaceted Views on Focusing Modifiers. Amsterdam: Benjamins.

Gast V. forthcoming b. „Even and so much as in downward entailing contexts. A quantitative study based on data
from the British National Corpus“. In: Emonds, J. & J. Markéta (eds.): Language Use and Linguistic Structure.
Proceedings of the Olomouc Linguistics Colloquium 2016. Olomouc: Palacký University.

Gast, V., L. Bierkandt, S. Druskat & C. Rzymski (2016).“Enriching TimeBank: Towards a more precise annotation of
temporal relations in a text“. In: Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016).

https://www.npmjs.com/

DFG form 53.35– 07/16 page 12 of 20

Druskat, S., V. Gast, T. Krause & F. Zipser. 2016. „corpus-tools.org: An Interoperable Generic Software Tool Set for
Multi-layer Linguistic Corpora“. In: Proceedings of the Tenth International Conference on Language Resources and
Evaluation (LREC 2016).

Gast, V., L. Bierkandt and C. Rzymski. 2015. „Annotating modals with GraphAnno, a configurable lightweight tool for
multi-level annotation“. In M. Nissim & P. Pietrandrea (eds.): Proceedings of the Workshop on Models for Modality
Annotation, 19-28. Stroudsburg, PA : Association for Computational Linguistics (ACL).

Anke Lüdeling

Lüdeling, A. & M. Kytö, eds. 2009. Corpus Linguistics. An International Handbook. Handbücher zur Sprach- und
Kommunikationswissenschaft. Vol. 1+2. Berlin: Mouton de Gruyter.

Odebrecht, C., M. Belz, A. Zeldes, A. Lüdeling & T. Krause. 2016. “RIDGES Herbology: Designing a Diachronic Multi-
Layer Corpus.” Language Resources and Evaluation, 1–31. doi:10.1007/s10579-016-9374-3.

Krause, T., U. Leser & A. Lüdeling. forthcoming. “graphANNIS: A Fast Query Engine for Deeply Annotated Linguistic
Corpora.” Journal for Language Technology and Computational Linguistics. Special Issue on Korpuslinguistische
Softwarewerkzeuge.

Lüdeling, A., H. Hirschmann & A. Shadrova. forthcoming. “Linguistic Models, Acquisition Theories, and Learner
Corpora: Morphological Productivity in SLA Research Exemplified by Complex Verbs in German.” Language
Learning Special Issue on Language Learning Research at the Intersection of Experimental, Corpus-Based and
Computational Methods: Evidence and Interpretation.

Sauer, Simon, and Anke Lüdeling. 2016. “Flexible Multi-Layer Spoken Dialogue Corpora.” International Journal of
Corpus Linguistics 21 (3): 419–38.

1.4.2 and 1.4.3 do not apply

2 Objectives and work programme

2.1 Anticipated total duration of the project

We anticipate a total project duration of 3 years. This duration is necessary mainly in order to
investigate, implement and thoroughly test our minimal infrastructure model, and to make the
research software it provides technically sustainable, re-usable, and ready for further
development beyond the scope of the project. We do not anticipate that the project duration
needs to be extended beyond the first 3 years, as we expect both the infrastructure and the
research software to be sustainable and self-financing at the end of the project.

2.2 Objectives

The main objective of our project is to model, implement, test and document an infrastructure
for the sustainable provision of research software that enables a potential for further
development of the research software it provides in the long term. In accordance with the notion
that a sustainable infrastructure must minimize running operating costs for the infrastructure
provider, we will implement a minimal infrastructure as detailed above. We will furthermore
document the implementation details, and test the implementation setup in different ways. We
will also document the test results and formulate best practices based on them.

As such a minimal infrastructure assumes technical sustainability of the research software it
provides, we will make the prototype of our research software technically sustainable, and
provide the product of this process via the implemented infrastructure. We will furthermore test
whether the potential for further development independently of the original developers can be
realized, and document the results. Furthermore, we will document uptake of the software by
the research community, and document the impact the infrastructure setup will have had on
community uptake and development contributions.

Table 1: Project objectives

Infrastructure Provided research software

1a: Implement the infrastructure model 2a: Make the prototype technically sustainable

1b: Document the implementation 2b: Provide the product via the infrastructure

1c: Test the implementation 2c: Test long-term development potential

1d: Document the test results 2d: Document community uptake

1e: Extract best practices from test results 2e: Document infrastructure impact on uptake and development

We will meet these objectives and measure our success as detailed in the following sections.

https://doi.org/10.1007/s10579-016-9374-3

DFG form 53.35– 07/16 page 13 of 20

2.2.1 Objectives: Infrastructure

We will implement our infrastructure model (1a) with the following components: SCRP:
GitHub; Dependency artifact repositories: Maven Central, Eclipse P2 repositories; Release
repository: Zenodo; Maintainer: changing (cf. section Work packages).

The implementation of the infrastructure model is successful if (a) Hexatomic is provided via
this infrastructure, i.e., is being made available both as source code and as runnable release;
(b) comprehensive documentation is being made available through the infrastructure (user and
developer documentation); (c) the infrastructure provides a Single Entry Point in form of a
landing page; (d) it provides a Single Point of Contact, i.e., an issue tracker. We will document
the implementation of the infrastructure (1b) including design decisions in, e.g., a technical
report, conference or journal publication ("publication").

We will heavily test the implementation (1c) by (a) exchanging the maintainer component
regularly (cf. below WP3); (b) testing other build artifact repositories than Zenodo; (c) testing
other SCRPs other then GitHub. As both the Eclipse P2 repositories and Maven Central are the
only feasible options for a dependency artifact repository in our case, we will not be able to
exchange them. The tests will be successful if they provide information about the stability of the
infrastructure. That means, they will (a) prove whether single components in the model can be
exchanged without compromising the stability of the infrastructure as a whole, and (b) disclose
any potential break points and other weaknesses in the implementation. We will document
these tests and their results (1d) in a publication.

And finally, we will publish best practices for implementing our minimal infrastructure
model for provisioning research software (1e), based on the tests and our experiences in a
publication.

2.2.2 Objectives: Research software

We will make the research software prototype GraphAnno technically sustainable (2a). In
accordance with the requirements for sustainable multi-layer annotation software for linguistic
corpora (generic data model, extensible architecture, interfaces to NLP tools, compatibility with
linguistic formats), we will modularize it, and embed it into the corpus-tools.org software set.
More precisely, we will re-use all parts of the current set of corpus-tools.org in the
implementation: The modular architectural prototype Atomic (extensible architecture), the Java
API of the generic graph-based meta model Salt (preliminary work by Lüdeling, cf. Zipser et al.
2015, Zipser & Romary 2010) (generic data model), the conversion framework Pepper
(preliminary work by Lüdeling, cf. Zipser et al. 2015) (compatibility with linguistic formats), and
the search engine of ANNIS (Krause et al. forthcoming).

Atomic has been created as an architectural prototype for a multi-layer annotation tool. It is
based on the Eclipse Platform, a plugin-based modular application platform written in Java,
which makes it highly extensible through plugins that can be added to the platform at runtime.
Using Atomic as Hexatomic's application platform allows for the modularization of GraphAnno's
feature set, and for its extension with the user interfaces required for multi-layer annotation,
e.g., graphical editors for specific annotation types. Additionally, Atomic already uses Salt as its
data model. Salt – just like GraphAnno's current graph model – allows for the representation of
potentially unlimited types of annotation which can be modeled as any combination of nodes
and vertices. This will contribute greatly to Hexatomic's technical sustainability as it allows the
re-use of the software for the most diverse annotation tasks. Instead of implementing whole new
tools from scratch for each new use case, users will simply have to implement the interface they
need in a plugin, to be able to add their specific annotations to a given corpus, represented in a
generic model. Pepper, which is also already embedded in the Atomic prototype, is a modular
conversion framework for linguistic data. Data from format A is mapped to a Salt main memory
model and can then be mapped to target format B, reducing the number of needed conversion
routes for n formats from n²-n to 2n in comparison to direct conversion tools. There already is a
large, and ever-growing, number of import and export modules for different formats available
(http://corpus-tools.org/pepper/knownModules.html). The use of Pepper again contributes to
Hexatomic's technical sustainability, as it will make it compatible with a large number of
linguistic formats. Additionally, Pepper makes Hexatomic compatible with ANNIS via the Pepper
exporter for the ANNIS format. ANNIS is used in a wide variety of projects internationally. Its
search engine is also embedded directly in Atomic, which will provide Hexatomic with a suitable

http://corpus-tools.org/pepper/knownModules.html

DFG form 53.35– 07/16 page 14 of 20

replacement for GraphAnno's own search functionality from the onset. ANNIS' search engine
employs a native query language to conduct powerful searches in linguistic corpora, far beyond
simple key-value searches. It can find complex linguistic structures, metadata, etc.

We will transfer the functionalities that GraphAnno provides into single plugins for
Hexatomic. We will also transfer the format compatibilities that GraphPynt provides by
implementing new Pepper import modules where necessary, and test available modules, e.g.,
for the CoNLL formats. Additionally, we will investigate the implementation of a stable interface
between the Natural Language Toolkit (NLTK, written in Python) and Java, via the Jython
implementation of Python for the Java Virtual Machine. As this is a non-trivial task due to partial
incompatibilities between Jython and the reference implementation of Python, CPython, we will
fall back to an alternative solution should the interface turn out not to be implementable within
the scope of the project. The alternative solution has two tiers, the first being the inclusion of
another NLP toolkit – Apache OpenNLP – which is written in Java and also provides maximum
entropy and perceptron-based machine learning. The second tier includes the implementation
of Pepper import modules for output formats of the NLTK to establish compatibility, if not
seamless integration. We will also take more general measures (Table 2) to make Hexatomic
technically sustainable, according to the criteria groups in section Technical sustainability of
research software.

Table 2: Measures taken for each criteria group towards technical sustainability of Hexatomic.

Criteria group Measure

Licensing License Hexatomic under the permissive Apache License, Version 2.0 (allows different
copyright holders for different parts, and commercial re-use)

Automated builds Use the automated Apache Maven build system with the Eclipse Tycho plugin

Documentation Create comprehensive user and developer documentation, incl. in-code API documentation

Buildability Document build process and dependencies, use Maven and Tycho to automatically pull the
right dependencies into the build

Installability Releases come in the form of an archive file (ZIP or similar), no installation beyond
extracting the archive is necessary

Testability Create comprehensive automatable tests (unit tests, GUI tests, integration tests), and
document test process and coverage

Portability Provide Hexatomic for the main operating systems Windows, Mac OS, and Linux

Analysability Provide source releases, publish code on GitHub, provide source code comments, adhere
to best practices (e.g., Boswell and Foucher (2011)), document architectural decisions

Changeability Allow external contributions, create contribution policy, contributor retains copyright

Evolvability Publicize development roadmap, create public API and documentation for extensions

Interoperability Provide interoperability with other tools via data im-/export modules for embedded Pepper

The technically sustainable implementation of GraphAnno in Hexatomic is successful if:
Hexatomic includes the complete feature set of GraphAnno and can be used productively; It
can be extended with new plugins; It can work directly on Salt main memory models; It can
import from and export to all formats for which Pepper modules exist, and from and to all
formats which GraphPynt supports; It provides an interface to one or more NLP tools, in the
best case to the NLTK directly, alternatively to Apache OpenNLP directly and to the NLTK
indirectly via Pepper support for its output formats; It is licensed with the Apache License,
Version 2.0, which is compatible with the Eclipse Public License 1.0 used for the Eclipse
Platform; It can be built automatically with Maven and Tycho; It runs on Windows, Linux and
Mac OS machines; It is comprehensively documented for users and developers, including
documentation of the build and test processes, test coverage, architectural design, contributor
policy, community policies (including code of conduct), development roadmap, and source code
comments; It can be installed by simply downloading and extracting an archive file;
Comprehensive automatable tests exist for it in the form of unit tests, GUI tests, and integration
tests; Its sources are published on GitHub and in source releases, and its code adheres to
best practices of clean coding; It has a public API supporting the extension via new plugins; It
can be extended by third parties.

We will provide Hexatomic via the defined implementation of our minimal
infrastructure model (2b). The provision is successful if users and potential contributors can
find and learn about Hexatomic through GitHub and access all documentation there, can
download releases of it from Zenodo, can communicate with the maintainer and the community
via GitHub, can report on and contribute to Hexatomic via GitHub, can download and build the

DFG form 53.35– 07/16 page 15 of 20

source code into a runnable version of the software including all dependencies, can cite specific
release versions of Hexatomic through the DOI provided by Zenodo.

We will test Hexatomic's long-term development potential (2c) by acquiring external
contributors from the linguistic community and ask them to provide new functionality to the
software for their own research. The test will be successful if (a) the external contributor is able
to extend Hexatomic with new functionality; (b) the external contributor does not have to resort
to direct support from the original developers, i.e., the project team, apart from the maintainer.

We will document community uptake of Hexatomic (2d). Ideally, we will be able to
successfully report attestable uptake in the form of publications citing the use of the software.
Alternatively, we will provide testimonials of productive use of the software in other projects. If
no uptake occurs, we will proactively investigate the reasons by approaching stakeholders and
documenting their specific reasons.

We will document infrastructure impact on the uptake and further development of
Hexatomic (2e) by conducting a qualitative study with users and contributors, and publish the
results.

2.3 Work programme and proposed research methods

2.3.1 Work packages

Figure 1: Roadmap with milestones for Hexatomic (blue lines) and maintainership transfers (red circles).

We distribute the project work over four work packages. In WP1 (Infrastructure evaluation) and
WP4 (End-of-project planning) we will plan the start and the end of the project. These work
packages have a shorter runtime of 3 months each. WP2 (Implementation, test, documentation
of the multi-layer annotation tool) and WP3 (Implementation, test, documentation of the minimal
infrastructure) have a longer runtime and will use most of the staff resources. The latter two
work packages are aligned with both the development process of Hexatomic and the
implementation, test and documentation of the proposed minimal infrastructure.

An important part of the project are the maintainership changes, which will test our
infrastructure implementation and produce concrete research results regarding our
infrastructure model. Figure 1 contains a graphical overview of maintainership changes as well
as development milestones for Hexatomic. As for the latter, we will first implement Hexatomic's
modular core architecture which will be used as a development platform for new plugins. This
first implementation will consist of the plugin-based framework itself, the Salt data model, the
embedded Pepper conversion framework, and the embedded ANNIS search engine. It will not
yet provide any user interfaces beyond those necessary for the management of corpus projects.
Additionally, we will develop procedures for builds, releases and documentation, and document
the procedures themselves. After the development platform is available, we will start to transfer
the feature set of GraphAnno onto it, modularizing the features in the process. In parallel,
acquired project partners (cf. WP2) can start to contribute features not originally included in
GraphAnno. At all stages over the course of the project, the currently responsible maintainer will
supervise the testing and inclusion of internal and external contributions, and will perform new
releases as well as oversee, produce and adapt the software documentation. All source code
and all releases will be available for the public from the release of the development platform

DFG form 53.35– 07/16 page 16 of 20

onwards, thus external partners can build on the development platform as early as possible and
can also give feedback on design decisions. Between the following first beta release, which will
already include several features including at least the generic graph-based editor from
GraphAnno, in month 16 and the first stable release in month 21, there will be more public beta
releases if needed. After that release of Hexatomic version 1.0, which includes the complete
GraphAnno feature set, new plugins with new features will be developed and released
frequently until the end of the project.

Maintainership changes are planned to happen in month 17, 22, 26 and 35. This schedule
ensures that there will be at least one release to manage for each maintainer. All maintainership
changes will be carried out under realistic premises and challenges. They will be documented
by the respective new maintainer, as she will be able to identify any shortcomings in
documentation as well as obstacles in the process. This way we can identify issues early, and
fix them during the project before the final maintainership change to an institutional maintainer is
performed. Figure 2 presents an overview of work package distribution over project time, and
assignment to team member.

Figure 2: Distribution of work packages over person months for 2 researchers (with job description of Research
Software Engineer, RSE) and 3 student assistants (SHK). Columns = months, months in red: maintainership change.

We assume that maintainers will have limited time for their maintainership task. Therefore,
neither researcher will ever work full-time as a maintainer. When a researcher is assigned the
maintainer role, their time will be split equally between maintainership and development tasks,
i.e., 25% of a full-time position per task set during maintainership assignments, as both
researchers are part-time positions with 50% of a full-time position. Student assistants have
more limited working hours and will therefore work on maintainership tasks exclusively when
assigned the role. This divided workload leads to uneven numbers in the total person months
used per work package.

Since the team is located at both Jena and Berlin, we will use the proposed sustainable
infrastructure to plan, design and document the features we will implement and to coordinate
releases. In addition to these infrastructure components, which are part of the sustainable
infrastructure, we will use temporary tools and platforms for internal communication within the
project team, like video conference software, chat systems, telephone and e-mail. These tools
and platforms don't need to be sustainable since they can be easily exchanged depending on
the preferences of the collaborators.

WP1: Infrastructure evaluation

Before we start the implementation of our infrastructure model it is important to evaluate the
proposed infrastructure and software components as well as possible alternatives, especially for
their sustainability features. In the process, we will create and publish guidelines on how we
identify sustainable infrastructure in the context of our project. All proposed infrastructure
components will be re-evaluated using these guidelines. If a proposed infrastructure no longer
fulfills the requirements we will search for new alternatives.

Deliverables:

 Guidelines on how we determine the sustainability of an infrastructure/software component

 Documentation about used external infrastructure and its sustainability

Sum: 3 person months researcher, 4.5 person months student assistant

WP2: Implementation, test, documentation of the multi-layer annotation tool

This work package bundles the work that is needed to transform the GraphAnno prototype into
the technically sustainable Hexatomic product. Hexatomic will include at least all GraphAnno
features needed to further annotate existing corpora that have been created in projects that
have previously used GraphAnno, so that with the release of Hexatomic 1.0, these projects

DFG form 53.35– 07/16 page 17 of 20

could switch to Hexatomic without losing functionality. Additionally, we will add further
annotation editors for specific annotation types which will have to be determined in the course of
the project in collaboration with stakeholders and interested parties.

This work package also includes the creation of comprehensive documentation of all aspects
of Hexatomic, i.e., user and developer documentation including API documentation,
documentation of the build and test processes, test coverage, architectural design, and source
code comments. We will constantly document our findings and plan to present them at
conferences for linguistic resources, digital humanities and computer science, in order to get
feedback from different communities, and to acquire stakeholders and project partners with the
aim to generate further contributions to Hexatomic. For further details, cf. section Objectives:
Research software.

Deliverables:

 Stable, technically sustainable, extensible multi-layer annotation software (Hexatomic) which
can be productively used by linguistic researchers from different communities

 Comprehensive documentation of all aspects concerning the software (cf. section
Objectives: Research software)

 Conference publications on Hexatomic, specifically its sustainable design and extension
capabilities for annotation tasks from different linguistic disciplines

Sum: 27.75 person months researcher, 45.5 person months student assistant

WP3: Implementation, test, documentation of the minimal infrastructure

This work package includes the implementation, test and documentation of the infrastructure
model with the target components as specified in WP1. The work itself includes the initial set up
of the components, i.e.: creation of a GitHub project with users and roles as needed; creation of
a dedicated Zenodo account; establishment of the link between GitHub and Zenodo for
releases; creation of a fork of the GraphAnno and Atomic GitHub repositories to secure access
for our project; transfer and test of re-usable parts of Atomic in preparation for use as the
development platform for Hexatomic; definition and documentation of a modularization strategy
for GraphAnno; setup and test of the build, test, and release processes with Maven and Tycho;
creation of initial documentation for all maintenance steps as well as software-related
documentation as specified above; etc. The work also includes all potential changes in
infrastructure components, including their research, implementation, tests, and documentation.

For an active community-driven software project, which we envisage Hexatomic to be, it is
important to have a dedicated maintainer. We assume that the maintainership is the one
component in our infrastructure model which will change relatively regularly. Therefore, changes
in maintainership must be well-prepared, which is also part of this work package. A
maintainership change plan includes (a) giving the maintainer administration access to all
infrastructure components; (b) update documentation of the build, test and release processes
before the change; (c) conduct a release where the new maintainer is supervised by the old
one; (d) document issues encountered during the change, adapt respective documentation
accordingly, and re-iterate the change process if necessary.

In order to subject the infrastructure implementation to stress tests, we will simulate the
maintainership transfer several times during the project, under increasingly realistic
circumstances. The first transfer (red circled Roman I, researcher 1 to researcher 2) will be of a
simulatory nature – both researchers are intimately familiar with the project setup – and aims at
testing the basic processes and identifying obvious shortcomings in the documentation. The
second transfer (red circled Roman II, researcher 2 to student assistant 2) is more realistic, as
the student assistant will be somewhat familiar with the project setup, but the time she can
dedicate to maintaining the software is limited and she will arguably have less experience with
software maintenance than researchers with a job description of Research Software Engineer.
The third transfer (red circled Roman III, student assistant 2 to student assistant 3) will be more
realistic yet, as student assistant 3 will only join the project for the last year and will thus be
unfamiliar with the project setup, lacking the experience the rest of the team will have from the
first two years of runtime. Additionally, she will be associated with the Research Data
Management Helpdesk at the Friedrich Schiller University Jena, and hence in terms of expertise
(and association) somewhat removed from the rest of the team. Additionally, integrating student

DFG form 53.35– 07/16 page 18 of 20

assistant 3 in a research data management institution provides the opportunity to test a realistic
setting for a research software maintainer, as in our opinion such institutions represent an
obvious location for this kind of role. Furthermore, if planning permits, the target maintainer of
the final transfer (cf. WP4 below) will fulfill a similar role in a permanent position at Humboldt-
Universität zu Berlin (cf. section Infrastructure components).

Deliverables:

 Technical report on the infrastructure implementation, including design decisions

 Documentation of infrastructure tests and results in a publication

 Comprehensive documentation of maintenance processes (build, test, release processes)
as maintainer guidelines

 Technical reports about each maintainership transfer

Sum: 2.25 person-months researcher, 10 person-months student assistant

WP4: End-of-project planning

At the end of the project a last transfer (red circled Roman IV, student assistant 3 to permanent
maintainer) is made to this "final" maintainer, who fills a permanent position at Humboldt-
Universität zu Berlin.

In addition to WP3 which plans and simulates maintainership transfers, we will also plan for
the sustained existence of the minimal infrastructure, and further development of Hexatomic
beyond the end of the project. This includes consolidating the large body of documentation
which has been iteratively updated throughout the project, and completing it where necessary. It
also includes the evaluation and implementation of rules for maintainers for organizing the user
and developer communities for Hexatomic, including, for example, contributor policies and
agreements detailing copyright and licensing policies and a code of conduct.

If problematic components have been identified in the course of the project, we will evaluate
alternative infrastructure components and perform any necessary transfers before the project
ends. Additionally, all potential legal issues for the maintainership transfer to the institution that
hosts Hexatomic after the project ends need to be identified and solved.

Deliverables:

 Community policies, including code of conduct

 Maintainership transferred to a permanent position at Humboldt-Universität zu Berlin

 Complete consolidated documentation published under a CC-BY 4.0 license

 Publication on best practices for implementing our infrastructure model

Sum: 3 person-months researcher

2.4 Measures to meet funding requirements and handle project results

By including the research community in the development process and explicitly test how a
maintainer can coordinate and incorporate external contributions, we also get feedback from the
community on what to improve in the contribution process and in our annotation tool.
Additionally, we are in contact with corpus developers in our own working groups and with
external groups to make sure the software is actually usable for the annotation tasks we want to
support. We also use conversion tools like Pepper to assure we are compatible with as many
corpus annotation file formats used by the community. More details about how we plan to meet
the funding requirements are described in the Objectives section.

The source code of software developed in the project will be made available as open source
and will be published under the Apache License, Version 2.0. Using the Apache License allows
use by commercial and non-commercial entities with as few restrictions as possible. The code
will be published on an external source code repository platform like GitHub, and releases will
be additionally published on the Zenodo repository to ensure long-term access. This ensures
that the software developed in this project is accessible for academic and non-academic users
long after the project is finished. Along with the source code, we will publish the corresponding
documentation, guidelines and reports about the maintainership transfers under a CC-BY
license. The documentation will also be added to GitHub and Zenodo. When publishing
scientific research papers we will prefer open access journals and conferences. With these

DFG form 53.35– 07/16 page 19 of 20

measurements for handling the project results, we follow the official and binding research data
policy of the Humboldt-Universität zu Berlin (https://www.cms.hu-berlin.de/de/dl/dataman/hu-fdt-
policy/at_download/file).

Additionally, to further ensure that the source code and documentation are available, we also
guarantee a continuity in active maintainership of the software, by transferring it to a permanent
position at Humboldt-Universität zu Berlin (see description of WP4 for details).

2.5 Information on scientific and financial involvement of international cooperation partners

n/a

3 Bibliography

 “About Maven Central”. 2017. http://central.sonatype.org/pages/about.html. Last accessed 22 Feb 2017.

 Apache Software Foundation. 2016. “Annual Report. Fiscal Year 2015–2016.” Tech. rep. Apache Software
Foundation. https://s3.amazonaws.com/files-dist/AnnualReports/ASFAnnualReport-FY2015-2016FINAL.pdf.

 Artaza, H., N. Chue Hong, M. Corpas et al. 2016. „Top 10 metrics for life science software good practices [version
1; referees: 2 approved]“. F1000Research 2016, 5(ELIXIR):2000. doi: 10.12688/f1000research.9206.1

 Bański, P., J. Bingel, N. Diewald, E. Frick, M. Hanl, M. Kupietz, P. Pȩzik, C. Schnober & A. Witt. 2014. “KorAP: The
New Corpus Analysis Platform at IDS Mannheim.” In: Vetulani, Z. & H. Uszkoreit (eds.): Human Language
Technology Challenges for Computer Science and Linguistics : 6th Language & Technology Conference.
December 7-9, 2013, Poznań, Poland. 586–87. http://ids-pub.bsz-bw.de/frontdoor/index/index/docId/3261.

 Becker, C., R. Chitchyan, L. Duboc, S. Easterbrook, B. Penzenstadler, N. Seyff & C. C. Venters. 2015.
“Sustainability Design and Software: The Karlskrona Manifesto.” In: 2015 IEEE/ACM 37th IEEE International
Conference on Software Engineering, 2:467–76. doi:10.1109/ICSE.2015.179.

 Biemann, C., K. Bontcheva, R. Eckart de Castilho, I. Gurevych & S. M. Yimam. forthcoming. “Collaborative Web-
Based Tools for Multi-Layer Text Annotation.” In: N. Ide & J. Pustejovsky (eds.): The Handbook of Linguistic
Annotation. Springer Netherlands. doi:10.1007/978-94-024-0881-2.

 Bontcheva, K., H. Cunningham, I. Roberts, A. Roberts, V. Tablan, N. Aswani & G. Gorrell. 2013. “GATE Teamware:
A Web-Based, Collaborative Text Annotation Framework.” Language Resources and Evaluation 47 (4): 1007–29.
doi:10.1007/s10579-013-9215-6.

 Boswell, D. & T. Foucher. 2011. The Art of Readable Code. O’Reilly Media, Inc.

 Chiarcos, C., S. Dipper, M. Götze, U. Leser, A. Lüdeling, J. Ritz & M. Stede. 2008. “A Flexible Framework for
Integrating Annotations from Different Tools and Tag Sets.” Traitment Automatique Des Langues 49 (2): 271–93.

 Cosmo, R. Di & S. Zacchiroli. 2017. “Software Heritage. Preserving the Free Software Commons.” Talk given at
Free and Open Source Software Developers’ European Meeting (FOSDEM’17), Brussels.

 Druskat, S. 2016a. “A Proposal for the Measurement and Documentation of Research Software Sustainability in
Interactive Metadata Repositories.” In: Allen et al. (eds.): Proceedings of the Fourth Workshop on Sustainable
Software for Science: Practice and Experiences (WSSSPE4). University of Manchester, Manchester, UK.
http://ceur-ws.org/Vol-1686/.

 Druskat, S. 2016b. “Entwurf Eines Metadatenrepositoriums Zur Erfassung Technischer Nachhaltigkeit von
Forschungssoftware.” Talk given at Helmholtz Open Science Workshop „Zugang zu und Nachnutzung von
wissenschaftlicher Software“, Helmholtz-Zentrum Dresden-Rossendorf; Zenodo. doi:10.5281/zenodo.168383.

 Druskat, S., V. Gast, T. Krause & F. Zipser. 2016. “corpus-tools.org: An Interoperable Generic Software Tool Set
for Multi-Layer Linguistic Corpora.” In: Calzolari et al. (eds.): Proceedings of the Tenth International Conference on
Language Resources and Evaluation (LREC 2016). 23–28. Paris, France: European Language Resources
Association (ELRA).

 Druskat, S., L. Bierkandt, V. Gast, C. Rzymski, F. Zipser. 2014. „Atomic: an open-source software platform for
multi-level corpus annotation“. In J. Ruppert & G. Faaß (eds.): Proceedings of the 12th Konferenz zur Verarbeitung
natürlicher Sprache (KONVENS 2014), October 2014, 228-234.

 European Commission. 2017. “Guidelines on FAIR Data Management in Horizon 2020. Version 3.0.” Tech. rep.
http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf.

 Gast, V., L. Bierkandt & C. Rzymski. 2015a. “Annotating Modals with GraphAnno, a Configurable Lightweight Tool
for Multi-Level Annotation.” In: Nissim, M. & P. Pietandrea (eds.): Proceedings of the Workshop on Models for
Modality Annotation., 19–28. Stroudsburg, PA: Association for Computational Linguistics (ACL).

 Gast, V., L. Bierkandt & C. Rzymski. 2015b. “Creating and Retrieving Tense and Aspect Annotations with
GraphAnno, a Lightweight Tool for Multi-Level Annotation.” In: Bunt, H. (ed.): Proceedings of the 11th Joint ACL-
ISO Workshop on Interoperable Annotation. 23–28. Tilburg: Tilburg Center for Cognition; Communication.

 Gil, Y., D. Garijo, S. Mishra & Varun Ratnakar. 2016. “OntoSoft: A Distributed Semantic Registry for Scientific
Software.” In Proceedings of the Twelfth IEEE Conference on EScience. Baltimore, MD.

doi:10.1109/eScience.2016.7870916.

 Goble, C. 2014. “Better Software, Better Research.” IEEE Internet Computing 18 (5): 4–8.

 Gröger, J. & M. Köhn. 2015. “Nachhaltige Software. Dokumentation Des Fachgesprächs ‘Nachhaltige Software’
Am 28.11.2014.” Dokumentationen 07/2015. Umweltbundesamt.
http://www.umweltbundesamt.de/en/publikationen/nachhaltige-software.

 Grootveld, M. & K. Nowak. 2017. “Q&A Session ‘Open Research Data in H2020 and Zenodo Repository’.”
Technischer Bericht. OpenAIRE. https://www.openaire.eu/public-documents?id=843&task=document.viewdoc.

http://central.sonatype.org/pages/about.html
https://s3.amazonaws.com/files-dist/AnnualReports/ASFAnnualReport-FY2015-2016FINAL.pdf
http://ids-pub.bsz-bw.de/frontdoor/index/index/docId/3261
https://doi.org/10.1109/ICSE.2015.179
https://doi.org/10.1007/978-94-024-0881-2
https://doi.org/10.1007/s10579-013-9215-6
http://ceur-ws.org/Vol-1686/
https://doi.org/10.5281/zenodo.168383
http://ec.europa.eu/research/participants/data/ref/h2020/grants_manual/hi/oa_pilot/h2020-hi-oa-data-mgt_en.pdf
https://doi.org/10.1109/eScience.2016.7870916
http://www.umweltbundesamt.de/en/publikationen/nachhaltige-software
https://www.openaire.eu/public-documents?id=843&task=document.viewdoc

DFG form 53.35– 07/16 page 20 of 20

 Heid, U., H. Schmid, K. Eckart & E. Hinrichs. 2010. “A Corpus Representation Format for Linguistic Web Services:
The D-SPIN Text Corpus Format and Its Relationship with ISO Standards.” In: Calzolari, N. et al. (eds.):
Proceedings of the Seventh International Conference on Language Resources and Evaluation (LREC’10). Valletta,

Malta: European Language Resources Association (ELRA).

 Hettrick, S. 2016. “Research Software Sustainability: Report on Knowledge Exchange Workshop.”
http://repository.jisc.ac.uk/6332/.

 Jackson, M., S. Crouch & R. Baxter. 2011. “Software Evaluation: Criteria-Based Assessment.” Software
Sustainability Institute.

 Krause, T., U. Leser & A. Lüdeling. forthcoming. “graphANNIS: A Fast Query Engine for Deeply Annotated
Linguistic Corpora.” Journal for Language Technology and Computational Linguistics. Special Issue on
Korpuslinguistische Softwarewerkzeuge.

 Odebrecht, C., M. Belz, A. Zeldes, A. Lüdeling & T. Krause. 2016. “RIDGES Herbology: Designing a Diachronic
Multi-Layer Corpus.” Language Resources and Evaluation, 1–31. doi:10.1007/s10579-016-9374-3.

 Penzenstadler, B. 2013. “Towards a Definition of Sustainability in and for Software Engineering.” In Proceedings of
the 28th Annual ACM Symposium on Applied Computing, 1183–5. SAC ’13. New York, NY, USA: ACM.
doi:10.1145/2480362.2480585.

 Penzenstadler, B. & H. Femmer. 2013. “A Generic Model for Sustainability with Process- and Product-Specific
Instances.” In Proceedings of the 2013 Workshop on Green in/by Software Engineering, 3–8. GIBSE ’13. New

York, NY, USA: ACM. doi:10.1145/2451605.2451609.

 Smith, A. M., D. S. Katz, K. E. Niemeyer & FORCE11 Software Citation Working Group. 2016. “Software Citation
Principles.” PeerJ Computer Science 2 (e86). PeerJ. doi:10.7717/peerj-cs.86.

 Tate, K. 2005. Sustainable Software Development: An Agile Perspective. Boston, Mass.: Addison-Wesley.

 “The Software Heritage Archive.” 2017. https://www.softwareheritage.org/. Last accessed 20 Mar 2017.

 Yimam, S. M., I. Gurevych, R. Eckart de Castilho & C. Biemann. 2013. “WebAnno: A Flexible, Web-Based and
Visually Supported System for Distributed Annotations.” In: Proceedings of the 51st Annual Meeting of the
Association for Computational Linguistics: System Demonstrations, 1–6. Sofia, Bulgaria: Association for

Computational Linguistics. http://www.aclweb.org/anthology/P13-4001.

 Zeldes, A., J. Ritz, A. Lüdeling & C. Chiarcos. 2009. “ANNIS: A Search Tool for Multi-Layer Annotated Corpora.” In
Proceedings of Corpus Linguistics 2009. Liverpool, UK.

 Zipser, F., T. Krause, A. Lüdeling, A. Neumann, M. Stede, A. Zeldes. 2015. “ANNIS, SaltNPepper & PAULA: A
multilayer corpus infrastructure”. Final Conference of the SFB 632 Information Structure: Advances in Information
Structure Research 2003 - 2015. Berlin, 08-09 May 2015.

 Zipser, F. & L. Romary .2010. “A model oriented approach to the mapping of annotation formats using standards”.
In: Proceedings of the Workshop on Language Resource and Language Technology Standards, LREC 2010.
Malta. URL: http://hal.archives-ouvertes.fr/inria-00527799/en/

http://repository.jisc.ac.uk/6332/
https://doi.org/10.1007/s10579-016-9374-3
https://doi.org/10.1145/2480362.2480585
https://doi.org/10.1145/2451605.2451609
https://doi.org/10.7717/peerj-cs.86
https://www.softwareheritage.org/
http://www.aclweb.org/anthology/P13-4001

